Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Community college students who transfer to 4-year institutions for engineering degrees are known to face significant adversity. Some common challenges they face include having minimal financial resources, a lack of engineering-oriented mentorship, and prolonged time to degree. Engineering transfer students are naturally diverse, ranging in age, experience, and motivation. Some have carved paths that include, for example, military service, starting a family of their own, or switching their career aims. The nuanced nature of the transfer student experience challenges higher education professionals to identify innovative ways for transfer students to meet their individualized goals. The engineering transfer students aim to transition from a previous institution to a 4-year baccalaureate institution, obtain an engineering undergraduate or graduate degree, and, finally, transition into an engineering-oriented career. These are major transitions. Schlossberg has identified factors that influence an individual’s ability to cope with their experienced transitions, namely, situation, self, support, and strategies. Through this lens, the transfer experiences and transfer shocks undergone by these ambitious students may be better understood and improved. A partnership between a 4-year institution, the University of California San Diego (UCSD), and two community colleges, Imperial Valley College (IVC) and Southwestern College (SWC), has been formed to better understand and support transfer engineering students as they make major transitions in, through, and out of their respective institutions. Through this partnership, a supportive program called EMPOWER has been devised to assemble cohorts of Pell-grant-eligible engineering transfer students so that their diverse and timely needs can be addressed. Scholarships and high-impact practices have been offered to these students. Program activities include cross-campus visits, faculty, and alumni mentorship, financially supported research opportunities, and cohort-supporting social opportunities. Through focus groups and survey questionnaires, the transition experience for these students is further investigated. In this paper, an outline is provided detailing the common challenges faced by engineering transfer students as they transition toward their careers, along with high-impact practices to support them.more » « less
- 
            While studies have shown that oral exams are a valuable method of assessment, their use has been limited due to concerns about scalability, examiner bias, and student anxiety. This paper presents preliminary results on incorporating oral exams into two large undergraduate engineering courses, examining the potential viability of these assessment strategies. This work was done when the courses were offered remotely due to COVID-19, but the results offer valuable insights that could carry over to in-person instruction as well.more » « less
- 
            This project aims to enhance students’ learning in foundational engineering courses through oral exams based on the research conducted at the University of California San Diego. The adaptive dialogic nature of oral exams provides instructors an opportunity to better understand students’ thought processes, thus holding promise for improving both assessments of conceptual mastery and students’ learning attitudes and strategies. However, the issues of oral exam reliability, validity, and scalability have not been fully addressed. As with any assessment format, careful design is needed to maximize the benefits of oral exams to student learning and minimize the potential concerns. Compared to traditional written exams, oral exams have a unique design space, which involves a large range of parameters, including the type of oral assessment questions, grading criteria, how oral exams are administered, how questions are communicated and presented to the students, how feedback were provided, and other logistical perspectives such as weight of oral exam in overall course grade, frequency of oral assessment, etc. In order to address the scalability for high enrollment classes, key elements of the project are the involvement of the entire instructional team (instructors and teaching assistants). Thus the project will create a new training program to prepare faculty and teaching assistants to administer oral exams that include considerations of issues such as bias and students with disabilities. The purpose of this study is to create a framework to integrate oral exams in core undergraduate engineering courses, complementing existing assessment strategies by (1) creating a guideline to optimize the oral exam design parameters for the best students learning outcomes; and (2) Create a new training program to prepare faculty and teaching assistants to administer oral exams. The project will implement an iterative design strategy using an evidence-based approach of evaluation. The effectiveness of the oral exams will be evaluated by tracking student improvements on conceptual questions across consecutive oral exams in a single course, as well as across other courses. Since its start in January 2021, the project is well underway. In this poster, we will present a summary of the results from year 1: (1) exploration of the oral exam design parameters, and its impact in students’ engagement and perception of oral exams towards learning; (2) the effectiveness of the newly developed instructor and teaching assistants training programs (3) The development of the evaluation instruments to gauge the project success; (4) instructors and teaching assistants experience and perceptions.more » « less
- 
            This work-in-progress paper presents an innovative practice of using oral exams to maintain academic integrity and promote student engagement in large-enrollment engineering courses during remote instruction. With the abrupt and widespread transition to distance learning and assessment brought on by the COVID-19 pandemic, there has been a registered upsurge in academic integrity violations globally. To address the challenge of compromised integrity, in the winter quarter of 2021 we have implemented oral exams across six mostly high-enrollment mechanical and electrical engineering undergraduate courses. We present our oral exam design parameters in each of the courses and discuss how oral exams relate to academic integrity, student engagement, stress, and implicit bias. We also address the challenge of scalability, as most of our oral exams were implemented in large classes, where academic integrity and student-instructor disconnection have generally gotten disproportionately worse during remote learning. Our survey results indicate that oral exams have positively contributed to academic integrity in our courses. Based on our preliminary study and experiences, we expect oral exams can be effectively leveraged to hinder cheating and foster academic honesty in students, even when in-person instruction and assessment resumes.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available